Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Oxidation and embrittlement behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions

Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki

Journal of Nuclear Materials, 587, p.154736_1 - 154736_8, 2023/12

 Times Cited Count:1 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions

Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki

Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08

 Times Cited Count:3 Percentile:95.99(Materials Science, Multidisciplinary)

Journal Articles

Microstructure and texture evolution and ring-tensile properties of recrystallized FeCrAl ODS cladding tubes

Aghamiri, S. M. S.*; Sowa, Takashi*; Ukai, Shigeharu*; Ono, Naoko*; Sakamoto, Kan*; Yamashita, Shinichiro

Materials Science & Engineering A, 771, p.138636_1 - 138636_12, 2020/01

 Times Cited Count:33 Percentile:90.98(Nanoscience & Nanotechnology)

Oxide dispersion strengthened (ODS) FeCrAl ferritic steels are being developed as potential accident tolerance fuel cladding materials for the light water reactors (LWRs) due to significant improvement in steam oxidation by alumina forming scale and good mechanical properties up to high temperatures. In this study, the microstructural characteristics and tensile properties of the two FeCrAl ODS cladding tubes with different extrusion temperatures of 1100$$^{circ}$$C and 1150$$^{circ}$$C were investigated during processing conditions. While the hot extruded sample showed micron sized elongated grains with strong $$alpha$$-fiber in $$<$$110$$>$$ texture, cold pilger rolling process change the microstructure to submicron/micron size grain structure along with texture evolution to both $$alpha$$-fiber ($$<$$110$$>$$ texture) and $$gamma$$-fiber ({111} texture) via crystalline rotations. Subsequently, final annealing resulted in evolution of microstructure to large grain recrystallized structure starting at recrystallization temperature of $$sim$$810-850$$^{circ}$$C. Two distinct texture development happened in recrystallized cladding tubes, i.e., only large elongated grains of (110) $$<$$211$$>$$ texture following extrusion temperature of 1100$$^{circ}$$C; and two texture components of (110) $$<$$211$$>$$ and {111} $$<$$112$$>$$ following higher extrusion temperature of 1150$$^{circ}$$C. The different texture development and retarding of recrystallization progress in 1100$$^{circ}$$C-extruded cladding tubes were attributed to higher distribution of oxide particles.

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Benchmark of fuel performance codes for FeCrAl cladding behavior analysis

Pastore, G.*; Gamble, K. A.*; Cherubini, M.*; Giovedi, C.*; Marino, A.*; Yamaji, Akifumi*; Kaji, Yoshiyuki; Van Uffelen, P.*; Veshchunov, M.*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1038 - 1047, 2019/09

Oxidation-resistant iron-chromium-aluminum (FeCrAl) steels have been proposed for application as cladding materials in light water reactor fuel rods with improved accident tolerance. Within the Coordinated Research Project ACTOF of the International Atomic Energy Agency (IAEA), a fuel performance modeling benchmark for FeCrAl cladding behavior was conducted. During this effort, calculations were performed with various fuel performance codes for a set of fuel rod problems with FeCrAl steel as cladding material, and results were compared to each other.

Journal Articles

Corrosion behaviour of FeCrAl-ODS steels in nitric acid solutions with several temperatures

Takahatake, Yoko; Ambai, Hiromu; Sano, Yuichi; Takeuchi, Masayuki; Koizumi, Kenji; Sakamoto, Kan*; Yamashita, Shinichiro

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 9 Pages, 2018/10

The corrosion behaviour of FeCrAl-ODS steels for the accident tolerant fuel cladding of LWRs were investigated in nitric acid solutions for the reprocessing process of spent fuels. The corrosion tests were carried out at 60$$^{circ}$$C, 80$$^{circ}$$C and the boiling point of the solutions, and the specimens were then analysed by XPS. The corrosion remarkably progressed at the boiling point, and the highest corrosion rate was 0.22 mm/y. In the oxide film, the atomic concentration of Fe was lower, than that in the base material, and those of Cr and Al were higher. The results show that the corrosion of FeCrAl-ODS steels in hot nitric acid solution is not severe because of the high corrosion resistance of the oxide film formed on the material; hence, the corrosion resistance of the new cladding materials in the dissolution process of spent fuel is acceptable for reprocessing operations.

Oral presentation

Japanese R&D program for development of accident tolerant fuel materials

Yamashita, Shinichiro

no journal, , 

The Japan Atomic Energy Agency (JAEA) has conducted and coordinated a Japanese R&D project of accident tolerant fuel (ATF) for establishing technical basis of ATF under a program sponsored and organized by the Ministry of Economy, Trade and Industry (METI). ATF candidate materials under consideration in the METI program are silicon carbide (SiC) composite and FeCrAl steel strengthened by dispersion of fine oxide particles (FeCrAl-ODS). SiC composite is a highly attractive material because of its lower hydrogen generation rate and lower reaction heat in comparison with conventional Zircaloy. Therefore, practical uses for a fuel cladding of pressurized water reactor (PWR) and for the fuel cladding, channel box of boiling water reactor (BWR) are expected. On the other hand, FeCrAl-ODS steel is a promising material and is considered to apply to the fuel cladding of BWR.

Oral presentation

R&D of advanced stainless steels for BWR fuel claddings, 3-3; Mechanical properties of FeCrAl ODS Steels

Aghamiri, M. S.*; Ukai, Shigeharu*; Ono, Naoko*; Hayashi, Shigenari*; Sowa, Takashi*; Sugawara, Naoya*; Sakamoto, Kan*; Yamashita, Shinichiro

no journal, , 

Both the grain structure and mechanical properties of the fuel cladding tubes are important issues to design the material for high temperature conditions and probable accident of nuclear reactor. In this study, we compared the microstructure and tensile properties of FeCrAl-ODS steels plates and cladding tubes in different extruded, recovered and recrystallized conditions and propose the material for the application.

Oral presentation

Japanese R&D program for establishing technical basis of accident tolerant fuel materials

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Watanabe, Seiichi*; Murakami, Nozomu*; Sato, Hisaki*; et al.

no journal, , 

Oral presentation

R&D program for Establishing Technical Basis of Accident Tolerant Fuel Materials in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Watanabe, Seiichi*; Murakami, Nozomu*; Sato, Hisaki*; et al.

no journal, , 

Oral presentation

Current status and future prospect of light water reactor accident-tolerant fuels R&D in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

no journal, , 

Research and development (R&D) program for establishing technical basis of ATFs for light water reactor (LWR) started in 2015. Since then the R&D is being conducted in cooperation with power plant providers, fuel venders, research institutes and universities for making the most use of the experiences in R&D, practical design, and evaluations of fuels and cores of commercial LWRs. Among currently explored ATF candidate materials in the program, silicon carbide composite reinforced by SiC fiber (SiC/SiC) and FeCrAl steel strengthened by dispersion of fine oxide particles (FeCrAl-ODS) offer several attractive features including the remarkable high temperature capabilities and the slow kinetics of steam oxidation reactions. This presentation will give an overview of the progress in ATF development and review the current status of data availability and integrity for the properties and behaviors of ATF candidate materials, followed by discussion on the primary differences from zirconium alloy in the behaviors in the severe accident scenarios. Finally, subjects to be solved for practical use of ATF will be summarized.

11 (Records 1-11 displayed on this page)
  • 1